Target detection based on a dynamic subspace
نویسندگان
چکیده
For hyperspectral target detection, it is usually the case that only part of the targets pixels can be used as target signatures, so can we use them to construct the most proper background subspace for detecting all the probable targets? In this paper, a dynamic subspace detection (DSD) method which establishes a multiple detection framework is proposed. In each detection procedure, blocks of pixels are calculated by the random selection and the succeeding detection performance distribution analysis. Manifold analysis is further used to eliminate the probable anomalous pixels and purify the subspace datasets, and the remaining pixels construct the subspace for each detection procedure. The final detection results are then enhanced by the fusion of target occurrence frequencies in all the detection procedures. Experiments with both synthetic and real hyperspectral images (HSI) evaluate the validation of our proposed DSD method by using several different state-of-the-art methods as the basic detectors. With several other single detectors and multiple detection methods as comparable methods, improved receiver operating characteristic curves and better separability between targets and backgrounds by the DSD methods are illustrated. The DSD methods also perform well with the covariance-based detectors, showing their efficiency in selecting covariance information for detection. & 2013 Elsevier Ltd. All rights reserved.
منابع مشابه
A New Dictionary Construction Method in Sparse Representation Techniques for Target Detection in Hyperspectral Imagery
Hyperspectral data in Remote Sensing which have been gathered with efficient spectral resolution (about 10 nanometer) contain a plethora of spectral bands (roughly 200 bands). Since precious information about the spectral features of target materials can be extracted from these data, they have been used exclusively in hyperspectral target detection. One of the problem associated with the detect...
متن کاملImage Classification via Sparse Representation and Subspace Alignment
Image representation is a crucial problem in image processing where there exist many low-level representations of image, i.e., SIFT, HOG and so on. But there is a missing link across low-level and high-level semantic representations. In fact, traditional machine learning approaches, e.g., non-negative matrix factorization, sparse representation and principle component analysis are employed to d...
متن کاملEstimating the Number of Wideband Radio Sources
In this paper, a new approach for estimating the number of wideband sources is proposed which is based on RSS or ISM algorithms. Numerical results show that the MDL-based and EIT-based proposed algorithm havea much better detection performance than that in EGM and AIC cases for small differences between the incident angles of sources. In addition, for similar conditions, RSS algorithm offers hi...
متن کاملExtending the Radar Dynamic Range using Adaptive Pulse Compression
The matched filter in the radar receiver is only adapted to the transmitted signal version and its output will be wasted due to non-matching with the received signal from the environment. The sidelobes amplitude of the matched filter output in pulse compression radars are dependent on the transmitted coded waveforms that extended as much as the length of the code on both sides of the target loc...
متن کاملTarget Tracking Based on Virtual Grid in Wireless Sensor Networks
One of the most important and typical application of wireless sensor networks (WSNs) is target tracking. Although target tracking, can provide benefits for large-scale WSNs and organize them into clusters but tracking a moving target in cluster-based WSNs suffers a boundary problem. The main goal of this paper was to introduce an efficient and novel mobility management protocol namely Target Tr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Pattern Recognition
دوره 47 شماره
صفحات -
تاریخ انتشار 2014